Как классифицируются насосы по принципу действия

Классификация насосов

За счет переданной энергии жидкость может пониматься на заданную высоту, перекачиваться на значительные расстояния или циркулировать в рабочем контуре.

В связи с широкими областями применения и большим разнообразием конструкций классификация насосов является не самой простой и однозначной задачей. Вследствие этого насосы классифицируются по различным признакам.

Классификация насосов по принципу действия

Наиболее распространенной является классификация насосов по принципу работы. Согласной этой классификации все многообразие конструкций насосов можно разделить на две основные группы: объемные и динамические.

  • Объемные
    • Возвратно-поступательные
      • Поршневые
      • Плунжерные
      • Диафрагменные
    • Вращательные (ротоные)
      • Роторно-поступательные
        • Шиберные
          • Пластинчатые
        • Роторно-поршневые
          • Радиально-поршневые
          • Аксиально-поршневые
      • Роторно-вращательные
        • Винтовые
        • Зубчатые
          • Шестеренные
          • Шланговые (перистальтические)
  • Динамические
    • Лопастные
      • Осевые
      • Диагональные
      • Центробежные
    • Трения
      • Вихревые
      • Дисковые
      • Шнековые
        • Лабиринтные
      • Струйные
      • Эрлифты

Классификация согласно ГОСТ 17398-72 Насосы. Термины и определения

В приложении к ГОСТ 17398-72 представлена классификация насосов по принципу действия и конструкции, согласно ней насосы делят на два основных класса, объемные и динамические. В каждом из классов можно выделить несколько групп по различным признакам.

Виды насосов по размеру

В зависимости от основных параметров — мощности, подачи разделяют следующие виды насосов:

Размер насоса Полезная мощность, л/с Подача куб. м/с
Микро 0 — 0,4
Мелкий 0,4 — 4
Малый 4 -100
Средний 100-400 до 0,5
Крупный 400 и более более 0,5

Классификация насосов по назначению

Насосы, использующиеся в системах водоснабжения, канализации, коммунальном хозяйстве классифицируют по назначению:

  • Общего назначения для пресной воды
    • Центробежные
      • Консольные
      • Двухстороннего входа
      • Вертикальные
        • Регулируемые
        • Нерегулируемые
      • Диагональные
    • Осевые
      • Вертикальные
        • Регулируемые
        • Нерегулируемые
      • Горизонтальные
    • Вихревые
    • Центробежно-вихревые
    • Многоступенчатые
  • Скваженные
    • Скваженные погружные
    • Скваженные с выносным электродвигателем (над скважиной)
  • Для энергосистем
    • Питательные
    • Конденсаторные
    • Сетевые
  • Для стоячих жидкостей
    • Горизонтальные
    • Вертикальные
  • Для абразивных смесей
    • Грунтовые горизонтальные однокорпусные
      • С нормальным проходным сечением
      • С увеличенным проходным сечением
    • Песковые
      • Горизонтальные
      • Вертикальные
  • Для волокнистых масс
    • Центробежные для бумажно массы
    • Центробежные консольные
      • Для жидкостей с объемно концентрацией твердых частиц на более 0,1 %
      • Для жидкостей с объемно концентрацией твердых частиц на более 1,5 %
    • Центробежные герметичные
      • Горизонтальные
      • Вертикальные
    • Осевые горизонтальные нерегулируемые
  • Опускные
    • Моноблочные для загрязненных вода
  • Дозировочные
    • Поршневые
    • Плунжерные
    • Сильфонные

Насосы. Справочная информация. Классификация насосов

Насосные агрегаты (насосы) применяются во всех отраслях промышленности, сельском и коммунальном хозяйстве, на транспорте и в бытовых целях.

Насосы относятся к классу энергетических машин, в которых механическая энергия привода преобразуется в энергию потока жидкости ( в том числе и с определенным процентом твердых включений).

По принципу действия насосы подразделяются на две основные группы: динамические и объемные.
К первой относятся насосные агрегаты, где жидкость под воздействием гидродинамических сил перемещается в камере постоянно сообщающихся с входом и выходом насоса.

В объемных — перемещение рабочей среды осуществляется под воздействием поверхностного давления при периодическом изменении объема насосной камеры попеременно сообщающейся с входом и выходом насоса.

В группу динамических относят: лопастные (центробежные и осевые насосы), насосы трения (вихревые, дисковые, червячные гидроструйные), инерционные (вибрационные).

К объемным — насосы возвратно-поступательного действия (поршневые, плунжерные), а также ротационные (шестеренчатые и винтовые).

Для того чтобы определиться в выборе насосного агрегата в каждом конкретном случае необходима следующая информация:
— Для каких целей будет использоваться насос?
— Какой объем жидкости необходимо транспортировать (расход) при помощи насоса и с каким давлением (напором)?
— Необходима информация о рабочей (перекачиваемой) среде, а именно: вязкость, химическая активность, наличие твердых веществ и их величина, температурные показатели рабочей среды, ее взрыво-пожаро безопасность и токсичность.
— Условия эксплуатации (на открытом воздухе, в помещении, влажность и взрыво-пожароопасность помещения, где будет эксплуатироваться насос).

Определяющими техническими параметрами насосов являются подача (расход) и напор (давление).

Подача — это объем жидкости, подаваемой насосом в единицу времени, выраженной в м3/ч (кубометров в час) или л/с (литров в секунду). Обозначается «Q».

Напор — это разность удельных энергий жидкости в сечениях после и до насоса, выраженная в метрах водяного столба (м). Обозначается «Н», другими словами давление жидкости в трубопроводе на выходе из насоса.

Классификация насосов по конструктивному исполнению.

Название насоса Конструктивное исполнение и особенности
Горизонтальный Ось вращения рабочих органов, например рабочих колес, расположена горизонтально вне зависимости от расположения оси привода илипередачи
Вертикальный Ось вращения рабочих органов расположена вертикально
Консольный Рабочие органы расположены на консольной части вала
Моноблочный Рабочие органы расположены на валу двигателя
С выносными опорами Подшипниковые опоры изолированы от перекачиваемой среды
С внутренними опорами Подшипниковые опоры соприкасаются с перекачиваемой жидкостью
С осевым входом Жидкость подводится в направлении оси рабочих органов
С боковым входом Жидкость подводится в направлении, перпендикулярном оси рабочих органов
Двустороннего входа Жидкость подводится к рабочим органам с двух противоположных сторон
Одноступенчатый Жидкость подается одним комплектом рабочих органов
Многоступенчатый Жидкость подается двумя и более последовательно соединенными комплектами рабочих органов
Секционный Многоступенчатый насос с торцевым разъемом каждой ступени
С торцевым разъемом С разъемом корпуса в плоскости, перпендикулярной оси рабочих органов
С осевым разъемом С разъемом в плоскости оси рабочих органов
Футерованный Проточная часть футерована (облицована) материалом, стойким к воздействию подаваемой жидкости
Погружной Устанавливается под уровнем подаваемой жидкости
Полупогружной Насосный агрегат с погружным насосом, двигатель которого расположен над поверхностью жидкости
Самовсасывающий Обеспечивает заполнение подводящего трубопровода жидкостью непосредственно без использования дополнительных устройств.
Регулируемый Обеспечивает в заданных пределах изменение подачи и напора
Герметичный Полностью исключен контакт подаваемой жидкости с окружающей атмосферой

Классификация насосов по отраслевому применению.

Помпы, насосы

Как подать воду на верхний этаж небоскрёба ― построить водонапорную башню на один этаж выше? Как заставить работать двигатель внутреннего сгорания ― пустить течь топливо без меры и самотёком? Чтобы каждый камушек мостовой не отзывался в голове сотрясением мозга, может попробовать надуть автомобильное колесо ртом? С насосами и помпами все подобные ситуации разрешаются на раз. Кстати, эти два понятия означают одно и то же, но одно – по-русски, другое – по-английски.

Насосы и способы их классификации

Насос ― это приспособление для перемещения жидкостей или газов за счёт создаваемой им разницы давлений на входе и выходе. Цели применения насосов, объёмы перекачивания, разнообразные химический состав и свойства перекачиваемого вещества требуют разновидности в конструкциях и принципах действия насосов. Разнообразие устройств в свою очередь требует создания классификаций. Их много, ведь в каждой их них за основу берутся разные критерии. Насосы классифицируются по:

  • — сфере применения;
  • — принципу действия;
  • — разнице в конструкции;
  • — назначению и месту использования.

Так вот, каждая конкретная модель насоса не относится к какой-то одной классификации, наоборот, её можно охарактеризовать в каждой из классификаций.

Разделение насосов по сферам применения

Тут всё просто: насосы бывают бытовыми и промышленными. То есть, часть насосов служит для нас, обывателей, в повседневной жизни, другая же, более значительная, обслуживает все хозяйственные отрасли: промышленность, сельское хозяйство и транспорт.

Бытовые насосы применяют в индивидуальном водоснабжении, в нецентрализованных системах отопления и канализации, для нужд личного транспорта и т.д. Естественно, мощность их намного ниже, нежели у промышленных.

Промышленные насосы применяются в системах подачи воды и охлаждения для промышленных установок, в водоочистных системах, в системах смазки и подачи топлива, а также для повышения давления и промывки узлов и деталей под давлением, для перекачки нефтепродуктов и продуктов питания, для обеспечения котлов водой. В химической отрасли, где нежелательно присутствие человека из-за агрессивности некоторых веществ и т.п. От производительности таких насосов зависит рентабельность заводов и предприятий сферы услуг, потому на мощности (читай, стоимости) этих насосов не экономят.

Классификация насосов по принципу действия

Вот два главных направления в такой классификации: насосы объёмного типа и динамические насосы.

Объёмные насосы работают за счёт изменения объёма камеры и, как следствие, изменяющейся благодаря этому величине давления. Вот это изменившееся давление и понуждает перемещаться жидкости или газы. Все насосы объемного типа способны к самовсасыванию. Это способность насоса всасывать воздух и воду за счёт разряжения в камере после того, как из неё ушла жидкость.

Наиболее известны из насосов объёмного типа является поршневые. Рабочим органом у них служит плунжер или поршень. Перемещаясь в цилиндрической камере, поршень создаёт избыточное давление. Для впуска (выпуска) рабочего вещества из камеры нагнетания служат нагнетательный и всасывающий клапаны. Внешний их вид зависит от объектов применения. Они могут быть вертикальными и горизонтальными, многоцилиндровыми и одноцилиндровыми, одноразовыми и многократного действия. Эти насосы имеют разный объём цилиндра, разную скорость перемещения поршня, следовательно, и разную производительность.

К роторным насосам относятся зубчатые, шестерённые, шиберные, винтовые, лабиринтные и тому подобные насосы. Хотя они довольно разные по устройству, их объединяет общий принцип работы: внутри зафиксированного корпуса перемещают

(продавливают) жидкость либо роторы, либо винты, либо кулачки, либо лопасти, либо другие детали, способные выполнять такие функции. Интересны импеллерные насосы: в эксцентрическом корпусе гибкие лопасти, находящиеся на колесе, сгибаются при его вращении и вытесняют жидкость. Конструкция роторных насосов значительно проще поршневых, отсутствуют даже всасывающий и нагнетательный клапаны, потому применяются эти насосы гораздо чаще поршневых.

Многие вакуумные насосы тоже относятся к роторным, главное, чтобы между деталями роторов, работающими на нагнетание, соблюдалась полная герметичность. Этот тип насосов работает исключительно на самовсасывание.

Перистальтические насосы в работе выглядят несколько экзотично. Они представляют собой многослойный гибкий рукав, изготовленный из эластомера. Вал с расположенными на нём роликами, вращаясь, пережимает роликами рукав, протискивая жидкость дальше по рукаву.

Динамические насосы работают за счёт динамических сил, то есть сил движения. Им недоступно самовсасывание, зато у них уравновешен процесс работы, благодаря чему практически отсутствует вибрация, и подача вещества происходит равномерно. Также они два или более раз преобразуют энергию. К ним относятся центробежные, вихревые и струйные насосы.

Центробежные насосы имеют внутри рабочее колесо, которое, проходя через жидкость, увеличивает кинетическую энергию двигающейся жидкости. Эта энергия благодаря увеличению скорости водотока увеличивает кинетическое, а затем и потенциальное давление воды, заставляя её перемещаться.

Вихревые насосы своей работой похожи на центробежные, но увеличение водотока здесь вызывается завихрениями жидкости. Они создаются благодаря эксцентричности корпуса, из-за чего регулярно изменяются зазоры между кожухом и лопастями. Такие насосы мобильны (из-за малой массы) и компактны, но их недостаток ― КПД менее 50%.

Струйные насосы ― это гидроэлеваторы и эрлифты. Первые перекачивают нужное вещество благодаря кинетической энергии рабочей жидкости, вторые работают в паре с компрессором ― смесь воздуха и перекачиваемого вещества перемещается из-за подъёмной силы воздушных пузырьков.

Классификация насосов по разнице в конструкции

Конструкционные особенности часто видимы даже на глаз: мы же не раз сталкивались с такой ситуацией, когда какой-то механизм нельзя поставить на нужное нам место (не подходят соединения, резьбы, несовместимость по размерам). Помимо этого, даже внутри одного типа насосов конструкции не совпадают. Для примера хватит взгляда на роторные насосы: роторы у них есть у всех, но рабочие детали у всех их разные (у одних кулачки, у других ― винты, у третьих ― лопатки или лопасти). По конструкции насосы могут быть изготовлены и в вертикальном, и в горизонтальном исполнении.

Классификация насосов по назначению

Начнём с наиболее часто используемых водяных насосов. Они бывают поверхностными и погружными. Как следует из самого определения, поверхностные находятся не ниже уровня земли, в скважину к воде опускается шланг или труба, забор воды происходит благодаря всасыванию. Часто такие насосы снабжаются автоматикой, срабатывающей от изменения давления при включении-выключении любого крана в этой водонапорной системе, и тогда они называются уже не насосами, а станциями. В колодцах и скважинах же чаще применяются погружные насосы, находящиеся непосредственно в самой воде. Иногда они снабжаются поплавками, которые отключают насос при отсутствии воды.

Дренажные насосы практически всегда являются погружными. Их цель ― откачивать воду из погребов, подвалов, прудов, систем индивидуальной канализации, бассейнов. Дренажные насосы перекачивают загрязнённую воду, потому в них должно быть как можно меньше трущихся деталей, соприкасающихся с водой.

Циркуляционные насосы наиболее часто применяются в отопительных системах домов для быстрейшей циркуляции теплоносителя (воды или антифриза). Они обычно бесшумны, компактны и встраиваются непосредственно в трубопровод. Правильный выбор такого насоса прост: за час он должен троекратно прогнать через себя теплоноситель.

Фекальные насосы предназначаются для перекачки грязных и сточных вод, в том числе и канализационных, где содержатся во взвешенном состоянии довольно крупные частицы. Они попадают в воду не только после туалетов, но и после септиков, из моечного оборудования и стиральных машин, из канализации спортивных клубов и предприятий общепита, гостиниц. В таких местах с большой вероятностью в сбросовые и канализационные системы попадают разные крупные и волокнистые предметы, способные забить трубопроводы. Потому многие фекальные насосы снабжаются режуще-измельчающим механизмом, которым не по силам только металл и камни, но кто же будет бросать их в канализацию.

Насосы прочно вошли в нашу повседневную жизнь: в любом устройстве, где циркулируют газ, воздух, вода или любая другая жидкость, обязательно стоит насос какой-либо конструкции. По некоторым данным насосы потребляют до 20% энергии, вырабатываемой на планете. А это значит, что минимум на такую же величину они облегчают человеческий труд. Главное – это правильный выбор, отвечающий требованиям в каждой конкретной ситуации.

Еще похожие статьи:

КЛАССИФИКАЦИЯ НАСОСОВ

Под насосами в общем случае понимают энергетические машины или установки, которые для перемещения перекачиваемой среды (жидкой, твердой и газообразной) при статическом или динамическом воздействии увеличивают ее давление или кинетическую энергию.

Историческое развитие насосостроения как способа транспортирования химических и физических веществ, а также постоянно возрастающие требования к параметрам износостойкости, всасывающей способности и специальные условия монтажа привели к большому количеству типов, которые обусловили разные определения понятий и типов насосов. В результате возникали случаи, когда заказчик, разработчик и поставщик применяли три различных определения для одного и того же насоса.

Для устранения этого очевидного недостатка была разработана система классификации насосов, по конструктивным признакам и принципу действия, а также по виду перекачиваемой жидкости.
Насосы по принципу действия подающего элемента подразделяют на насосы возвратно-поступательного действия, роторные и динамические.

НАСОСЫ ВОЗВРАТНО-ПОСТУПАТЕЛЬНОГО ДЕЙСТВИЯ

Перемещение жидкости происходит в результате осевого двиижения поршня или мембраны в цилиндре насоса, который через всасывающий и нагнетательный клапаны периодически соединяется с подводящим и напорным трубопроводами. При увеличении рабочего объема насоса вследствие движения поршня или мембраны жидкость всасывается через всасывающий клапан или вентиль, а при обратном ходе поршня из-за уменьшения рабочего объема через нагнетательный клапан или вентиль вытесняется в напорный трубопровод.
По виду вытеснителя насосы подразделяют на поршневые и мембранные (рис. 1).

Признаками классификации поршневых насосов могут служить:

а) способ действия поршня (рис. 2);
б) положение поршня и цилиндра (рис. 3);
в) форма поршня (рис. 4);
г) вид привода (рис. 5).

Соответственно этому различают насосы простого или двойного действия, горизонтальные или вертикальные, радиальные или аксиальные, клапанные, крыльчатые, дисковые, плунжерные многоступенчатые с рычажным, кулачковым приводом или с качающимся приводным диском, а также прямодействующие.

Мембранные насосы классифицируют по расположению и колиичеству мембранных цилиндров, а также по типу привода.

РОТОРНЫЕ НАСОСЫ

Роторные насосы работают главным образом по принципу вытеснения, причем один или несколько вращающихся поршней или винтов образуют друг с другом в цилиндре насоса рабочие полости, причем размеры полости всасывания наибольшие, а наапорной полости — наименьшие; поэтому жидкость из полости всасывания и выталкивается в напорную полость. Однако некоторые роторные насосы имеют постоянные рабочие полости (объем вытеснения) как на входе, так и на выходе.

Принципиальные различия и некоторые преимущества роторных насосов над поршневыми заключаются:

а) во вращающихся поршнях;
б) в отсутствии клапанов в цилиндрах;
в) в уравновешивании масс или моментов.

По конструктивному исполнению рабочих органов все роторные насосы делят на пять основных типов, а именно: шестеренные, винтовые, коловратные, пластинчатые, роликовые. На рис. 6 приведены эти типы роторных насосов.

Шестеренные насосы (рис. 7) подразделяют в основном по числу шестерен (на двух- и многошестеренные), по типу зацепления (с наружным и внутренним зацеплением) и по числу потоков жидкости (на одно- и многопоточные насосы).

Как видно по рисункам, жидкость, попадая в межзубчатые пространства зубчатых колес, перемещается от входной к напорной полости насоса. Взаимное зацепление зубьев, а также малые радиальные и торцовые зазоры между шестернями и корпусом уменьшают протечки перекачиваемой жидкости.

Винтовые насосы подразделяют в основном по количеству рабочих органов на одно- и многовинтовые, а по направлению потока жидкости на одно- и двухпоточные винтовые (рис. 8). В противоположность шестеренным насосам процесс перемещения жидкости в винтовых насосах происходит в осевом направлении по свободным межвинтовым полостям от стороны всасывания к напорной стороне.

Коловратные насосы выпускают в настоящее время самых различных конструкций. Для конструкции этого вида xapaктерны так называемые двухвальные насосы с одно- или многоопрофильными роторами различной формы поперечного сечения (рис. 9). Почти все коловратные насосы перемещают перекачиваемую жидкость от стороны всасывания к напорной стороне без изменения объема полости вытеснения.

Пластинчатые насосы — типичные представители одновальных насосов, по принципу действия подразделяют на простого и двойного действия (рис. 10), а по виду ротора на одно- и многоопластинчатые насосы (шиберные).

Рабочий процесс этих типов характеризуется изменяющимся (серповидным) рабочим объемом полостей всасывания и напора. Уплотнение между входным и напорным патрубками осуществляется плоскими пластинами или лопатками, помещенными в пазах ротора, при минимальных радиальных и торцовых зазоорах между ротором и корпусом.

Роликовые насосы подразделяют только по принципу действия на одно- и двукратного действия (рис. 11). В данном случае эффект нагнетания обусловливается вращающимися поршнями, эксцентрично расположенными в корпусе, которые приводят эластичную оболочку в колебательное движение и перемещают жидкость вследствие быстрого изменения (пропорционально частоте вращения) рабочего объема полостей всасывания и напора.

ДИНАМИЧЕСКИЕ НАСОСЫ

В отличие от поршневых и роторных эти насосы работают по динамическому принципу. В результате вращения рабочих колес внутри рабочего пространства насоса кинетическая энергия от рабочего колеса передается перекачиваемой жидкости, которая в последующих элементах (диффузоре, направляющем аппарате, спирали) в большей части преобразуется в энергию давления.

По принципу действия насосы прежде всего подразделяют на лопастные и вихревые (рис. 12). Если лопастной насос не обладает, как правило, свойством самовсасывания, то вихревой — обычно работает по принципу самовсасывания. Кроме того в вихревых насосах в подавляющей степени происходит непрямой обмен энергии между вторичным потоком жидкости, находящейся в рабочем колесе, и перекачиваемой жидкостью в боковом канале корпуса насоса.

Лопастные насосы подразделяют:
по направлению потока на выходе из рабочего колеса — на центробежные насосы радиального, диагонального типов и на осевые (рис. 13);
по прохожденио жидкости за рабочим колесом — с направляяющим аппаратом, спиральным или кольцевым отводом;
по направлению потока жидкости в рабочем колесе или между рабочими колесами — на одно- и двухпоточные (рис. 14).

В многооступенчатых насосах применяют одностороннее или симметричное расположение рабочих колес (рис. 15).

В заключение следует еще указать на деление, или классифиикацию, насосов по всасывающей способности:

самовсасывающие, частично самовсасывающие (с предвключенными ступенями всасыывания или всасывающими устройствами) и не самовсасывающие.

Вихревые насосы по форме рабочего колеса можно классифиицировать на открытые (звездообразные), закрытые (с периферийнообоковым каналом) и чисто вихревые (рис. 16), а по прохождению потока на одно- и многоступенчатые насосы.

СПЕЦИАЛЬНЫЕ НАСОСЫ

К этой группе относятся прежде всего небольшие насосы, которыe по классическим признакам (наличие вращающегося или перемещающегося вдоль оси рабочего органа) нельзя отнести к обычным насосам.

Струйные насосы (рис. 17) характеризуются наличием трубы Вентури, в центр которой подводится струя рабочей среды (вода, пар или газ). Рабочая струя образует пограничный слой и вследствие высокой скорости вначале захватывает частички окружающего воздуха, а затем вследствие обменных процессов всасывает перекачиваеемую жидкость из подводящего трубопровода. Пневматические насосы (газлифты) подают жидкость в результате образования водовоздушной смеси малой плотности при поступлении воздуха под давлением в зааглубленную под уровень жидкости трубу. Окружающая жидкость большей плотности проникает во всасывающую трубу, обеспечивая тем самым процесс подъема жидкости (рис. 18).

Электромагнитный насос (рис. 19), предназначенный главным образом для перекачивания жидкого металла, создает по так называемому правилу правой руки осевую силу в перекачиваемой жидкости, которую можно рассматривать в качестве движущегося проводника в магнитном поле. Вследствие этого создаются услоовия для перемещения жидкости.

КЛАССИФИКАЦИЯ ПО ВИДУ ПЕРЕКАЧИВАЕМОЙ СРЕДЫ

От физических и химических свойств перекачиваемой среды неизбежно зависят конструкции насоса, принцип его работы, а также выбор материала. На этом основании вид перекачиваемой среды пелесообразно принять в качестве второго признака для классификации насосов. Поэтому определены шесть типичных перекачиваемых сред для насосов. В соответствии с этим насосы предназначены для чистых и слегка загрязненных жидкостей, загрязненных жидкостей и взвесей, легко загазованных жидкостей, газожидкостных смесей, агресссивных жидкостей, жидких металлов.

КЛАССИФИКАЦИЯ ПО НАЗНАЧЕНИЮ

На практике довольно часто встречаются насосы разных типов, названия которым даны в зависимости от особенностей их эксплуатации. Так, например, различают питательные, циркуляционные, конденсатные насосы, если речь идет о насосах для тепловых электростанций.

К циркуляционным или насосам охлаждения относятся насосы, которые, как правило, работают в замкнутых системах. Под реакторными насосами подразумевают в настоящее время главные циркуляционные насосы, которые включены в первичный контур реактора атомной электростанции.

Судовые центробежные или поршневые трюмные насосы используют в судостроении.

В погружных насосах или насосах с мокрым или защищенным электродвигателем, последний размещают в перекачиваемой среде. Общеизвестные гидравлические насосы, относящиеся к этим типам и устанавливаемые в гидравлические системы, являются не только подающими машинами, но и источниками напорного потока жидкости.

Классификацию по назначению следует применять лишь в том случае, когда недостаточно первых двух признаков (классификация по принципу действия и по перекачиваемой среде) для четкой характеристики определенного типа насоса.

Классификация насосов по принципу действия

По характеру энергии, доминирующих в насосе: объемные, По характеру сил, преобладающих в насосе: объемные, в которых превалируют силы давления и динамические, в которых доминируют силы инерции.

По типу соединения рабочей камеры с входом и выходом из насосного агрегата: периодическое соединение (объемные насосы) и постоянное соединение входа и выхода (динамические насосы).

Объёмные насосы

Принцип действия объёмных насосов создан на посменном заполнении рабочей камеры водой и выдавливании её из рабочей камеры.

Некоторые типы насосов:

Импеллерные насосы — характеризуются ламинарным (спокойным) движение перекачиваемой среды на выходе из (насосного агрегата) насоса, и могут применяться в качестве систем дозировки.

Пластинчатые насосы — характеризуются спокойным и равномерным всасывание перекачиваемой жидкости (среды) на выходе из насоса, в частности применяются в дозировочных устройствах. Существуют как нерегулируемыми, так и регулируемыми. В пластинчатых регулируемых насосах коррекция подачи исполняется за счёт трансформации объёма рабочей камеры благодаря изменению эксцентриситета статора и ротора. В роли регулирующего устройства используются механические и гидравлические регуляторы.

Винтовые насосы — характеризуются ровным движением перекачиваемой жидкости на выходе из насоса, могут применяться в составе устройств дозирования.

Поршневые насосы — могут формировать очень высокое (напор) давление, с другой стороны очень плохо эксплуатируются с абразивными (механическими примесями) жидкостями, могут применяться для устройств дозирования.

Перистальтические насосы – характеризуются малым (напором) давление, химически пассивны, могут использоваться для устройств дозирования.

Мембранные насосы или пневматические насосы (например бытовые насосы: вибрационный насос «малыш», «родничок», «ручеек», «гном») — характеризуются малым (напором) давление, часто применяются в дозировании.

Вакуумный насос — оборудование, предназначающееся для удаления (откачки) паров или газов до обусловленного уровня давления (технического вакуума).

Ламельные (импеллерные) насосы — выполнены в кислото- щёлоче- стойком пищевом масло- бензо- стойком исполнении.

Динамические насосы

Динамические насосы классифицируются:

Лопастные насосы — рабочим элементом у которых приходится мелкозаходный шнек или колесо лопастное.

Центробежные насосы, (например: погружной насос «водомет», скважинный насос ) у которых преобразование механической силы привода в потенциальную силу движения потока совершается вследствие возникновения центробежных сил, появляющихся при взаимодействии лопаток колеса с водой.

Центробежные насосы классифицируются:

Центробежно-шнековый насос — тип насоса центробежного с подводом воды к рабочему элементу выполненному по типу шнека мелкозаходного крупного диаметра (дисков), расположенному по центру, с выносом жидкости по вверх касательной или от корпуса в бок.

Консольный насос (консольно-моноблочные насосы) — тип центробежного насоса с односторонним подводом воды к рабочему элементу насоса, размещенному на конце вала от привода.

Осевые насосы (пропеллерные насосы), рабочим элементом которых предназначается колесо лопастное пропеллерного вида. Вода в этих пропеллерных насосах передвигаются вдоль оси кручения крыльчатки. Быстроходные осевые насосы с коэффициентом повышенной быстроходности, обуславливается немалыми значениями подач, но невысоких показателей напора.

Полуосевые насосы (турбинные насосы, диагональные насосы), рабочим элементом которых предназначается полу осевое (турбинное, диагональное) лопастное колесо.

Радиальные насосы, рабочими элементом которых предназначаются радиальные колеса. Тихоходные многоступенчатые и одноступенчатые насосы с высокими показателями напора (давления) при низкой подаче.

Центробежно-шнековые насосы (дисковые насосы) — могут перекачивать склеивающиеся и карамелизующиеся массы, со свойствами клея.

Вихревые насосы (поверхностные насосы) — некоторый вид лопастных насосов, в нем преобразование механической силы в потенциальную силу потока (напор) давление выходит за счет появления вихрей в рабочем канале насоса.

Струйные насосы, в которых движение жидкости исполняется за счет силы потока подсобной жидкости, газа или пара (нет маневренных частей, но невысокий КПД).

Тараны (гидротараны), называю насосы обладающие свойством гидравлического удара для нагнетания текучей среды (почти отсутствуют трущихся деталей, минимум двигающихся элементов, конструкция проста, могут развивать очень высокое давление на выходе, низкие КПД и производительность)

Ищите нас: ВКонтакте Facebook LiveJournal Twitter

Понравилась статья? Поделиться с друзьями:
Добавить комментарий
Adblock
detector