Как работает 3д принтер

Как работает 3D-принтер? Просто о сложном

3D-печать — обширная и сложная тема, в которой можно разбираться бесконечно. Расскажем вкратце, как работает 3D-принтер, чем он печатает и как модель с компьютера превращается в физический объект.

Трехмерная печать становится все популярнее. Как работает 3D-принтер, какие материалы используются при печати моделей, а также некоторые практические советы рассмотрим в нашей статье.

Как работает 3D-принтер?

Начнем с технологии печати. В наши дни 3D-принтеров очень много, а соответственно, и способов создания моделей с их помощью — тоже не перечесть. Но в принципе, все принтеры в основе имеют одну из трех различных технологий.

Во-первых, существует так называемая стереолитография (SL или SLA). Внутри принтера помещается ванна, в которой находится жидкий фотополимер. Фотополимеры — это пластмассы или смолы, которые затвердевают при воздействии света. Принтеры обычно работают с акриловой, эпоксидной или виниловой смолой. По поверхности смолы движется лазерный луч, и там, где он ее касается, смола отвердевает. В фотополимерном бассейне есть платформа, которая после каждого затвердевания опускается немного вниз (глубже в ванну). Таким образом, объект печатается по рядам, как текст в обычном принтере. После полного отвердения модели она отличается высокой прочностью и химической стойкостью. Преимуществом этого метода является точность передачи: даже мелкие микрометрические структуры принтер может напечатать очень чисто. К сожалению, стереолитографические принтеры в настоящее время очень дороги.

Вторая технология работы 3D-принтера — селективное лазерное спекание (SLS). Чтобы понять, как это работает, представьте себе вертикальную трубу, в которой находится движущаяся платформа. В начале печати платформа находится наверху. Пластик, формовочный песок с пластмассовым покрытием, металлический или керамический порошок распределяются по платформе тонким слоем при помощи валика. Затем по платформе начинает перемещаться лазерный луч, нагревая определенные точки в порошке, так что они соединяются и образуют первую плоскость объекта. После этого платформа движется немного вниз, и процесс начинается снова. Таким образом, объект снова строится по слоям.

Третий способ — классический. Он называется моделированием методом наплавления (FDM). В этом процессе каждый новый слой изделия формируется из жидкого пластика, который пропускается через экструдер (программируемое устройство, придающее ему определенную форму) и после этого немедленно отверждается лазером. Затем отвержденный слой смещается вниз, экструдер придает форму новому слою, и он наплавляется сверху на предыдущий, и так далее. Такие принтеры относительно недороги и могут быть собраны самостоятельно с применением некоторых ноу-хау. Здесь точность печати получается хуже по сравнению со стереолитографией, однако для любителей это самая подходящая процедура 3D-печати.

Как создаются модели для печати?

Сначала создается 3D-модель объекта при помощи программы CAD и сохраняется в специальном формате STL. Затем файл STL загружается в программу резки для принтера, например, Cura или Slic3r. Программа резки позволяет задавать физические свойства модели, такие как плотность заполнения или использование опорных конструкций.

Программа преобразует 3D-модель в G-код. Он содержит инструкции для экструдера, по которым тот должен придавать форму каждому слою модели. Код загружается в принтер, устройство запускается, и начинается печать.

Какие материалы используются в 3D-печати?

3D-печать осуществляется при помощи различных видов пластика. Он выпускается в форме нитей, намотанных на большие катушки. Нить заряжается в принтер, который втягивает и расплавляет ее для того, чтобы пластик стал жидким, и ему можно было придавать форму.

Чаще всего в принтерах используется полилактид (PLA). Это пластик, который получают из возобновляемых источников — например, из кукурузного крахмала. Он водоотталкивающий, а также безопасный для изготовления емкостей для пищевых продуктов. Кроме того, он огнестойкий и устойчивый против УФ-излучения. Самое большое преимущество — у него при печати нет неприятного запаха.

Печать при помощи полилактида (PLA)

Очень часто используется сополимер акрилонитрил-бутадиен-стирол (ABS). Этот пластик является одной из наиболее широко используемых пластмасс в мире. Он особенно устойчив к маслам, жирам и высоким температурам. При печати он также не дает запаха. Модели из него получаются матовыми.

Еще один материал для 3D-печати — поливиниловый спирт (PVAL или PVOH). Особенностью этого пластика является его водорастворимость. Благодаря этому он удобен для печати несущих конструкций внутри модели, на которые затем наплавляется водостойкий пластик, тот же PLA. После завершения модели несущие конструкции внутри растворяются.

Для печати несущих конструкций в моделях из пластика ABS часто используется ударопрочный полистирол (HIPS). Этот пластик обладает высокой ударной вязкостью и твердостью.

К эксклюзивным методам относится печать соединениями PLA, то есть, при помощи смеси пластика PLA и частиц других веществ. Таким образом создаются модели, к примеру, из дерева или меди.

Редко, но все-таки используется поликарбонат (PC). У этого пластика очень высокая температура плавления — от 270 ° C до 300 ° C. Кроме того, этот пластик обладает высокой ударопрочностью и термостойкостью.

Для печати деталей механизмов, к примеру, зубчатых колес или винтов, которые должны выдерживать большое усилие и не ломаться, используется нейлон.

Также существует ряд пластиков с маркировкой «elastic» или «flex». Они могут быть изготовлены из разных веществ, но, как правило, в качестве основного ингредиента используются термопластичные эластомеры на основе уретана. Их объединяет одно — гибкость.

Посуда и контейнеры для пищевых продуктов печатаются с использованием безопасных нетоксичных пластика. Это либо уже упомянутый PLA, либо полипропилен (PP), который, в отличие от первого, является гибким. Существует также безопасное для пищевых продуктов сочетание PLA и ABS — PETG, которое более устойчиво к атмосферным воздействиям.

Как работает 3D принтер: объяснение на простых примерах

3D-печать распространена повсеместно. Она позволяет создать что угодно — от прототипов всевозможных изделий, до функциональных частей реактивных двигателей самолетов и космических аппаратов, от канцелярских принадлежностей и автозапчастей, до шоколадок и сувениров.

Но, как именно работают 3D-принтеры, как они создают трехмерные объекты любой возможной формы — знают еще не все. Если вы хоть раз задавались этими вопросами, то перед вами — самое простое объяснение 3D-печати.

Общие принципы 3D-печати

Принцип 3D-печати по любой существующей технологии — создание объемных объектов из совокупности плоских слоев.

Цифровая модель изделия разделяется на слои специальной программой — слайсером, а принтер печатает эти слои, один на другом, составляя из них трехмерный объект. Так, из множества слоев, получается объемная деталь.

Общий принцип один, но технологии различаются; самая распространенная и доступная среди них — FDM.

FDM

Моделирование методом послойного наплавления (FDM), также известное как производство способом наплавления нитей (FFF) — самый популярный и массовый тип 3D-печати.

Стандартное FDM-устройство работает как термоклеевой пистолет управляемый роботом, что не удивляет, ведь разработка технологии FDM когда-то начиналась с опытов с термоклеем. Пластиковый пруток проталкивается через горячее сопло, где он плавится, а выходя из него укладывается слоями. Процесс повторяется снова и снова, пока не появится готовый 3D-объект.

Единственное отличие в том, что 3D-принтеры используют не стержни термоклея, а пластиковый филамент намотанный на катушки.

Самые распространенные материалы для FDM (FFF) — пластики ABS и PLA.

Пластиковая нить, она же филамент, выпускается в такой форме для того, чтобы она могла легко плавиться при заданной температуре, но очень быстро застывать — после охлаждения всего на пару градусов. Именно это и позволяет печатать 3D изделия со сложной геометрией с высокой точностью.

Проще говоря, 3D-печать отличается от традиционной 2D-печати только тем, что повторяется снова и снова, создавая слой за слоем, один на поверхности другого. В конце концов, тысячи слоев образуют 3D-объект.

FDM-принтер на примере MakerBot Replicator 2


Стереолитография

Стереолитография использует свет для “выращивания” объектов в емкости с фотополимерной смолой. Как и в прочих технологиях 3D-печати, изделие образуется слой за слоем, здесь — при отверждении жидкого фотополимера светом.

От FDM стереолитография отличается более монолитными принтами, даже с одинаковой заданной толщиной слоя.

На фото: принты FDM и SLA, слой обеих моделей — 0,1 мм.

Дело в разнице в технологиях — фотополимерная засветка дает более аккуратные слои, чем расплавленный филамент выдавливаемый из сопла FDM-принтера.

SLA и DLP — две разновидности стереолитографии. SLA — лазерная стереолитография, DLP — цифровая проекция. Различие между ними в том, что в SLA источником света служит лазер, а в DLP — проектор.

Независимо от технических особенностей, принцип работы устройств SLA и DLP схож. Для запуска печати необходимо опустить специальную платформу построения в емкость с жидкой фотополимерной смолой.

Платформа останавливается на высоте одного слоя от дна емкости.
Происходит засветка источником света принтера.
Жидкий полимер, под воздействием света, становится твердым и прилипает к платформе построения. После этого платформа поднимается на высоту еще одного слоя и процесс повторяется.

SLA-принтер на примере Formlabs Form 2

SLA дает более гладкие поверхности, по сравнению не только с FDM, но и с DLP, о которой рассказываем далее.

Так получается потому, что DLP проецирует слои картинкой из пикселей, а луч лазера в SLA движется непрерывно, что дает ровный, не пикселизованный слой.

DLP в тех же целях использует проектор, а LED DLP — ЖК-дисплей с ультрафиолетовой подсветкой. В этих конструкциях свет проецируется на смолу по всей площади слоя одновременно, что дает преимущество в скорости, когда необходима печать крупных объектов с заполнением в 100% — полная засветка слоя происходит быстрее, чем в SLA.

Но при печати мелких или пустотелых объектов SLA быстрее, так как интенсивность засветки лазерным лучом, а значит и скорость полимеризации, выше.

DLP-принтер на примере SprintRay MoonRay S

SLS

Главное преимущество технологии перед FDM и SLA — SLS-печать не требует создания поддерживающих структур, ведь материалом поддержки служит окружающий модель материал — это позволяет печатать изделия любой формы, с любым количеством внутренних полостей, и заполнять ими весь рабочий объем принтера. SLS-принтеры работают с широким спектром материалов, а их принты прочнее, чем большинство напечатанных FDM или стереолитографией.

Благодаря прочностным характеристикам, напечатанные на SLS-принтерах детали могут использоваться в практических целях, а не только как прототипы и декоративные элементы.

Для создания объекта аппарат направляет лазер на слой мелкофракционного порошка, сплавляя частицы друг с другом для формирования слоя изделия. Затем, устройство рассыпает следующую порцию порошка на поверхность готового слоя и разравнивает его, а лазер расплавляет, создавая следующий слой изделия. Процедура повторяется до тех пор, пока печать не будет завершена.

Есть у SLS-принтеров и минус — их стоимость. Они очень дороги, по сравнению с FDM и SLA/DLP. Это связано с ценой необходимых для такой печати высокоэнергетических лазеров. В принципе, стоимость даже самых дешевых SLS-принтеров совсем недавно начиналась от $200 000.

Тем не менее, некоторые компании в настоящее время работают над тем, чтобы сделать данную технологию более доступной, поэтому есть шанс, что приобрести SLS-принтер в ближайшем будущем смогут позволить себе даже любители. Один из примеров — польская компания Sinterit.

SLS-принтер на примере Sinterit Lisa Pro

Извлеченная из SLS-принтера модель не требует удаления поддержек и может использоваться без постобработки, ее надо лишь очистить от лишнего порошка.

Polyjet

Главное преимущество технологии Polyjet в ее мультиматериальности — многие Polyjet-принтеры способны печатать объект большим количеством различных материалов одновременно, что позволяет создавать изделия состоящие из участков с разными механическими и оптическими свойствами, то есть — разной твердости и цвета. Это фирменная технология компании Stratasys.

Пример: принтер Stratasys и напечатанные на нем кроссовки.

Polyjet 3D-принтеры распыляют крошечные капельки фотополимерной смолы на поверхность и полимеризуют их ультрафиолетовым излучением.


Этот процесс повторяется до тех пор, пока не будет создан объект. В отличие от FDM-принтеров, Polyjet-устройства могут наносить материал из многочисленных сопел одновременно.

Polyjet-принтер на примере Stratasys J750

Заключение

Прочитав эту статью, вы ознакомились с принципами и примерами работы 3D-принтеров функционирующих по самым распространенным технологиям.

Существуют и другие технологии, в основном — связанные с 3D-печатью металлами, но они используются только в промышленности. О них мы поговорим отдельно.

Чтобы выбрать 3D-печатное оборудование и материалы для любых задач обращайтесь в Top 3D Shop — проконсультируем, подберем максимально подходящую технику и расходники, оформим заказ, доставим, установим и научим.

Принцип работы 3д принтера

Принцип работы 3D принтера

Это устройство, которое позволяет из расходного материала создавать объёмные предметы разной степени сложности. Эти объекты должны быть смоделированы в специальной CAD-программе и переданы на печать в виде файла определённого формата.

Основный принцип работы

  • на компьютере в специальной CAD-программе моделируется объект;
  • готовый объект, сохраненный в специальном формате, нарезается программой — слайсером, которая идет в комплекте с устройством, причём толщина каждого слоя определяется возможностями 3д-принтера и выбранными настройками;
  • каждый слой переводится в двоичный командный код, который получает устройство, и в соответствии с которым, согласно координатам, наносится слой материала;
  • слой за слоем формируется объект.

Технологии трёхмерной печати

Существует довольно большое число технологий, применяемых в 3D-печати. От технологии и технология зависят от используемого для печати материала.

В настоящее время для этого можно использовать: пластиковые нити, фотополимерные смолы, металлические порошковые сплавы; гипсовый композитный порошок, воск, а также разные строительные и кулинарные смеси.

Наиболее известны следующие технологии 3D-печати:

  • FDM;
  • SLS и SLM;
  • ламинирование;
  • фотополимерная печать;
  • печать гипсом;
  • строительная печать бетонной смесью и другие.

Послойное наплавление

Наиболее простая и популярная технология печати – это FDM или технология послойного наплавления.

Она подразумевает подачу пластиковой нити к специальному нагревательному элементу.

Посредством экструдера расплавленный пластик наносится в заданной печатной области. Экструдер закреплён на печатной головке, которая перемещается по рабочей зоне печати в горизонтальной плоскости. Как только слой будет напечатан, рабочая платформа опустится на величину слоя и работа продолжится снова.

Этот тип печати является наиболее доступным. И устройства, основанные на нём, стоят дешевле всего. Именно поэтому такие 3D-принтеры являются самыми востребованными для домашне-бытовых целей, то есть персонального использования.

Фотополимерная печать

Фотополимерная печать осуществляется несколько иначе. Материал также наносится послойно, но он изначально находится в жидком состоянии в специальной ванне. Слой за слоем на материал воздействует лазерный или ультрафиолетовый луч, и платформа поднимается вверх. То есть объект как бы выращивается. Под действием излучения материал полимеризуется и твердеет.

Так как такая технология позволяет получать изделия с высочайшей точностью, в том числе и тонкостенные, то она является более перспективной и обладает более широкими возможностями. Именно она используется на сложных производствах и предприятиях.

Востребованы подобные устройства и в медицинской сфере, открывая широчайшие возможности изготовления высокоточных хирургических шаблонов и даже протезов.

Как устроен 3D-принтер

Общая схема, по которой работают все 3D-принтеры, основана на возможности линейно двигаться в трех измерениях.

Приборы оснащают высокоточными шаговыми двигателями и контроллером, отвечающим за порядок перемещения этих двигателей.

Автоматизированная система передвигает печатающую головку, в нужный момент выдавливая материал (например, расплавленную пластмассу).

Слой за слоем создается фигурка, изначально заложенная в программу.

В основе лежит принцип работы «картезианского робота» (устройство, способное передвигаться по картезианским координатам, более известным каждому школьнику, как Декартовы координаты – X, Y, Z).

Примерная схема печатающей головки 3d принтера

  • Экструдер. Именно эта деталь чаще всего совершенствуется в новых моделях и считается самой сложной и тонкой частью механизма. Состоит из термальной головки и привода, выдавливающего нить пластика. Работает так: в принтер заправляется катушка с нитью, привод разматывает и выталкивает ее, подавая к термальной головке (называемой также камерой). Головка обычно представляет собой нагреваемый алюминиевый элемент, который расплавляет нить. В полужидком состоянии вещество выдавливается через отверстие печатающей головки.
  • Линейный двигатель. От его разновидности зависит скорость печати 3D-принтера и долговечность устройства. Для каждой оси координат используется отдельный гладкий стержень, работающий вместе с подшипниками. Подшипники бывают пластиковыми, стальными, бронзовыми и т.д. Бронзовые сложнее всего калибровать во время сборки, но зато они менее шумные.
  • Фиксаторы. Чтобы линейные приводы не выходили за пределы рабочего поля, нужны ограничители – фиксаторы. На функциональность работы они не влияют, но их наличие делает печать значительно более точной и аккуратной. Встречаются модели с оптическими или механическими фиксаторами.
  • Платформа. Поверхность размером 100-200 кв.мм., на которой будет создаваться готовая фигура. Производители обычно делают платформу подогреваемой – это нужно, чтобы не допустить трещин или разрывов на модели, обеспечить сцепление между отдельными слоями, а также между первым слоем и самой платформой. Площадка изготавливается обычно из алюминия или стекла – вещества с хорошей проводимостью тепла.

Как происходит печать

Программное Обеспечение для 3d принтера

Сначала с помощью специального программного обеспечения создается модель будущего объекта, затем ее загружают в принтер, который по описанной выше технологии создает физический объект.

Такой способ называется прототипированием. Но сейчас есть еще несколько принципов работы 3D-принтеров, разработанных на его основе:

  • Стереолитография (SLA). В роли основного материала выступает смесь жидкого полимера со специальным реагентом, служащим для отвердевания пластика (напоминает эпоксидку). Ультрафиолетовый лазер отвечает за полимеризацию смеси в нужный момент. Фигура строится на подвижной платформе, соединенной с небольшим «лифтом», перемещающим заготовку вниз или вверх на расстояние одного слоя. Когда лазерный луч погружается в полимер, то останавливается на местах, которые должны затвердеть. После формирования слоя лифт поднимает или опускает заготовку.
  • Выборочное лазерное спекание (SLS). Не секрет, что технологии 3D-печати внедрены уже почти во все области производства. Не стала исключением и металлообработка, именно здесь применяется метод SLS. В качестве материала выступает композитный порошок, содержащий в составе частицы размером 50-100 мкм. Порошок равномерно наносится слой за слоем, после чего «запекается» лазером. Технология очень экономичная и практически безотходная, если сравнивать с традиционной резкой, литьем, фрезеровкой, сверлением и т.д.
  • Многоструйное моделирование. Уникальная разработка американской компании 3D Systems, похожая на стандартную струйную печать в обычных принтерах. В процессе задействовано несколько десятков или даже сотен сопел, которые рядами выстроены на печатающей головке. «Чернила» нагреваются, слоями опускаются на рабочую поверхность, затем отвердевают при комнатной температуре.

Это лишь основные и наиболее распространенные методы, на самом деле существует масса более редких, узкоспециализированных вариантов – например, УФ-облучение через фотомаску (SGC), послойное склеивание пленок, склеивание порошков, ламинирование листовых материалов (LOM) и другие.

Области применения 3D-печати

Технология нашла применение практически во всех сферах деятельности человека:

  • образовании;
  • архитектуре;
  • науке;
  • машиностроении;
  • медицине;
  • кулинарии;
  • приборостроении;
  • производстве одежды и обуви.

Шоколадный 3d принтер

Пицца, распечатанная на 3d принтере

Макет дома, распечатанный на 3d принтере

Автомобиль, распечатанный на 3d принтере

Конструктивные особенности 3D-принтеров

Принцип работы 3D-принтера основан на законах кинематики. Выделяют несколько схем 3D-печати, исходя из перемещений платформы и печатающей головки, которые могут двигаться относительно друг друга в различных плоскостях.

Существует четыре основные схемы печати:

  • дельта,
  • экструдер перемещается по осям Х и Y,
  • экструдер меняет положение в пространстве по осям X и Z,
  • экструдер движется по осям X, Y и Z.

I схема

Платформа находится в неподвижном состоянии, положение по осям x, y, z меняет только экструдер. Особенность модели — наличие высокого каркаса. Печатающая головка размещена на трёх стержнях, каждый из которых закреплен на подвижном блоке, размещённом на опоре, с возможностью вертикального перемещения.

Плюсы: высокая скорость печати, хорошая точность.

II схема — экструдер движется по осям Х и Y

Печатающая головка находится над платформой и способна двигаться влево-вправо или вперед-назад, а платформа вверх-вниз.

ЗагрузкаЭкструдер движется по осям Х и Y

III схема — экструдер перемещается по осям X и Z

Экструдер, как в предыдущем типе, способен передвигаться влево или вправо, а также менять своё положение в пространстве по высоте. Платформа, в свою очередь, способна двигаться вперед или назад не меняя высоты.

ЗагрузкаЭкструдер перемещается по осям X и Z

IV схема – экструдер движется по осям X, Y и Z

Последняя схема предполагает использование неподвижной платформы. Как в случае со схемой «Дельта», экструдер способен перемещаться по трём осям [x, y, z], однако в данном случае нет сложного механизма фиксации печатающей головки.

Слой за слоем: как работает 3D-принтер

Самый доступный и потому самый распространённый способ 3D-печати, при котором готовый предмет создаётся из жидкого пластика или композитных материалов, которые проходят через печатающую головку-экструдер и послойно отверждаются лазером. Готовый слой смещается вниз, и печатается новый, и так до тех пор, пока не будет готов весь элемент. FDM-принтеры являются одним из самых простых способов 3D-печати, подобные устройства можно даже собрать самостоятельно. Ну, или купить готовые решения, которых на рынке присутствует множество.

Стереолитография (SL или SLA)

По своему принципу действия этот вид 3D-печати похож на предыдущий, только в нём исходным материалом выступает жидкая смола (акриловая, эпоксидная, виниловая) или пластмасса. Луч лазера послойно «запекает» исходный материал, формируя готовый предмет. Затем он промывается от остатков смолы или пластмассы и подвергается окончательному отверждению с помощью ультрафиолетового света. Стереолитография позволяет печатать элементы с тонкой деталировкой и после завершения всех процедур готовая деталь получается прочной и химически стойкой, но обратной стороной медали является очень высокая стоимость таких 3D-принтеров.

Cелективное лазерное спекание (SLS)

Ещё один способ послойной печати предметов, в котором лазер спекает порошок — металлический, пластиковый или керамический — слой за слоем, формируя готовый объект. Существует методика плавки (SLM), которая отличается более мощными лазерами и возможностью работать с чисто металлическим порошком без всяких добавок — так формируются монолитные элементы, лишённые пористости, характерной для обычного спекания.

Как правило, толщина нити и самих слоев составляет доли миллиметра: типичный диаметр сопла варьируется от 0,3 до 0,8 мм, тогда как толщина слоя составляет от 50 до 300 микрон. Для сравнения, толщина человеческого волоса колеблется в пределах 80-100 микрон. Очевидно, что печать тонкой нитью занимает достаточно долгое время. Действительно, типичный производственный цикл с легкостью может измеряться часами, а то и превышать сутки: здесь все зависит от выбранного диаметра сопла, толщины индивидуальных слоев и габаритов самого изделия. Чем выше толщина нити и слоев, тем меньше времени уйдет на печать, но и качество поверхностей будет ниже.

Расходные материалы

Одним из самых привлекательных факторов FDM-печати остается огромное разнообразие относительно недорогих расходных материалов. Два наиболее популярных пластика АБС(акрилонитрилбутадиенстирол) и ПЛА (полилактид).

С первым вариантом знакомы абсолютно все из нас – это наиболее широко используемый промышленный пластик, из которого изготовлена ваша любимая кофемолка, шариковая ручка, защитный кожух смартфона и множество других бытовых вещей.

Второй представляет собой экологичную альтернативу, будучи органическим, биоразлагаемым полимером, изготавливаемым из кукурузы или сахарного тростника.

Пусть ПЛА и не так долговечен, его можно смело выбрасывать в мусор, так как под воздействием среды через несколько месяцев полилактид превратится в безвредный компост.

Что такое 3D-принтер и зачем он нужен?

Аддитивные технологии долго шли в массы: институты и исследовательские центры вплотную занимались ими ещё с 80-х годов, и вот настал момент, когда вы можете прикоснуться к хайтеку и освоить 3D-печать прямо у себя дома. Для этого даже не придётся грабить банк: цены на 3D-принтеры сравнялись со средними смартфонами. Разбираемся, как это работает и какие возможности открываются для мейкеров и DIY-энтузиастов!

Зачем нужен 3D-принтер

Принтер весьма пригодится инженерам-самодельщикам. Вам больше не придётся искать универсальный корпус для проекта, а потом сверлить в нём дополнительные отверстия. 30 минут проектирования, несколько часов на печать — и у вас уже готов корпус, который идеально подходит именно под ваше устройство. Сборка из 5 шилдов никуда не влезает? Забудьте о таких проблемах.

Принтер точно поможет в ремонте штуковин по дому. У каждого в жизни случалась ситуация, когда вещь приходилось выбросить, хотя в ней сломалась всего одна пластиковая деталь. С помощью 3D-печати вы сможете легко заменить в приборах редкие пластиковые детали, которые трудно найти отдельно.

Пока вы не научились моделировать пластиковые детали самостоятельно, их можно попросту качать в интернете. Существует множество сайтов с миллионами готовых бесплатных моделей, которыми свободно обмениваются пользователи. Мы посвятили поиску моделей отдельную статью.

Какие бывают 3D-принтеры

Существует несколько основных видов 3D-принтеров, которые кардинально отличаются между собой по принципу работы.

Технология FDM (Fused Deposition Modeling)

Наиболее распространённый тип — FDM-принтеры с послойным наплавлением пластика. Они работают за счёт подвижной печатной головки с нагревательным элементом. В неё подаётся пластик в виде прутка, который плавится и в жидком виде выдавливается на печатный стол. При этом пластик обдувается вентилятором и мгновенно застывает, а головка начинает выдавливать новый слой поверх застывшего.

Технология SLA (Stereolithography Apparatus)

SLA-принтеры работают на основе стереолитографии: вместо пластика здесь используется специальная фотополимерная смола, которая застывает под воздействием ультрафиолетовых лучей. Для печати смола наполняется в ванночку, снизу которой расположен дисплей с ультрафиолетовыми пикселями. На него в течение нескольких секунд выводится рисунок нижнего слоя модели. При этом смола над дисплеем застывает в виде отображаемого рисунка и затем прилипает на специальный подвижный стол сверху. После этого стол с первым слоем приподнимается, и в смоле происходит полимеризация следующего слоя.

Технология SLS (Selective Laser Sintering)

SLS-принтеры используют технологию выборочного лазерного спекания, для которой применяется специальный пластиковый порошок. В процессе печати насыпается тонкий слой порошка, и принтер обрабатывает его лазером, чтобы слой затвердел в соответствии с моделью. Далее насыпается следующий слой порошка и сплавляется с предыдущим — и так по кругу. В конце остаётся лишь очистить готовую деталь от остатков порошка, которые затем можно использовать повторно.

Сравнение технологий

Каждый тип 3D-принтеров имеет свои преимущества и недостатки.

  • SLS-принтеры обладают большими размерами и требуют дорогого сырья. Они часто используются на высокотехнологичных производствах для штучных деталей.
  • SLA-принтеры распространены гораздо шире. Ультрафиолетовый дисплей повышает точность, однако работать с токсичной фотополимерной смолой дома затруднительно.
  • FDM-принтеры пользуются наибольшей популярностью у хоббистов. Пластиковый пруток стоит гораздо дешевле специального порошка или фотополимерной смолы. Однако, для печати сложной геометрии на таком принтере придётся позаботиться о вспомогательных поддержках. Да и скорость печати в среднем ниже, чем на других технологиях. Зато FDM-принтеры самые простые и безопасные в обслуживании.

Как подготовить печать

Процесс от зарождения идеи до выхода готовой пластиковой детали несложный — школьник справится. Мы разобрали всё по полочкам в руководстве по 3D-печати на примере принтера Flying Bear Ghost 5, а здесь покажем общий принцип.

Исходная модель

Сначала нужно создать или скачать 3D-модель будущей детали. Как правило, исходники хранятся в формате STL, который описывает полигональную структуру модели в виде множества треугольников. Но сразу отправить подобный файл на принтер не удастся: для успешной печати сперва нужно разбить детальную 3D-модель на слои, которые по зубам принтеру.

Слайсинг

Программа для нарезки моделей (слайсер) потребует от вас самую малость — ввести модель вашего принтера и задать настройки печати: толщину слоя, процент внутреннего заполнения детали, вспомогательные опоры и тому подобное. На основе этих данных слайсер автоматически подготовит специальный код для принтера — G-Code, в котором описано, как нужно двигать печатающей головкой, до какой температуры её нагревать и с какой скоростью выдавливать пластик, чтобы слой за слоем получить желаемую модель. Затем остаётся загрузить этот код в 3D-принтер и запастись терпением до конца печати.

Весь процесс подготовки модели наглядно иллюстрируется программой и снабжается интуитивными подсказками для начинающих пользователей. В общем, не так страшен слайсинг, как его малюют!

Обработка

После того, как модель готова, её можно дополнительно обработать шкуркой или химическим раствором. Это сгладит неровности между слоями, и деталь будет выглядеть прямо как заводская. В интернете немало лайфхаков, которые помогут минимизировать изъяны модели и придать ей улучшенный вид.

Расходники для печати

Свойства напечатанной вещи во многом зависят от сырья. Как мы уже говорили, 3D-принтеры FDM используют в качестве расходника пластиковые нити, и у вас есть огромный простор для экспериментов с разными видами пластика.

  • PLA-пластик хорошо поддаётся экструзии и позволяет печатать сложные формы при относительно низких рабочих температурах головки от 190 °C. Биоразлагаемость PLA играет на руку экологии, но в то же время, вещи из него получаются не слишком прочные.
  • PETG-пластик прочнее, чем PLA, но тоже хорошо подходит для принтеров с нагревом в районе 200 °C. Разновидности пластика PET хорошо знакомы вам по пакетам и пластиковым бутылкам от газировки.
  • ABS-пластик обладает более высокой прочностью по сравнению с остальными типами. Однако для качественной печати из пластика ABS вашему принтеру понадобится повышенная температура экструзии порядка 250 °C и подогреваемый до 120 °C стол, поэтому не всякая модель замахивается на его поддержку.
  • HIPS-пластик близок по температурным свойствам к ABS, но обладает низкой спекаемостью с ним и легко удаляется органическим растворителем. Благодаря этому пластик HIPS часто применяют для печати составных моделей и опор под модели из ABS.
  • Пластик Wood производится с добавлением древесной пыли. Готовые модели из него неплохо имитируют древесину не только своим видом, но и запахом.

Катушки пластика встречаются в продаже на каждом шагу — вам не составит труда выбрать подходящие расходники и комбинировать различные свойства и цвета деталей при печати.

В заключение

Домашняя 3D-печать — это проще, чем кажется. С 3D-принтером под рукой вы сможете создавать любые пластиковые детали, которые придут вам в голову: корпуса, макеты, фигурки и многое другое. Не забывайте, что в вашем распоряжении огромнейшая библиотека моделей, которые выложены в общий доступ в интернете. Сломалась насадка для пылесоса или ограничитель открывания окна? Не проблема! Имея собственный 3D-принтер, вам нужно лишь взять готовую модель из интернета, прогнать через программу-слайсер в пару кликов и отправить её на печать.

Детально о 3 д принтерах и их принципе действия

Печатающая техника бывает нескольких видов. Ранее мы уже публиковали статьи о струйных и лазерных аппаратах. В этом материале детально расскажем, что такое 3d принтер и как работает этот вид устройств.

Хоть популярности такие «девайсы» приобрели только в последнее десятилетие, но история их начинается еще с восьмидесятых годов прошлого столетия. И как показывает практика, нужны они в самых разных областях жизни человека. А потому по характеристикам делятся на разные виды и типы 3д устройств. А также применяются несколько технологий печати и порой кардинально разные.

Чтобы правильно пользоваться этим типом техники, рекомендуем ознакомиться с принципом ее работы и посмотреть на видео, как и чем печатает 3 д принтер. Также присмотритесь к используемым для печати материалам. Они должны быть качественными и подходить устройству по характеристикам, что указывается в инструкции к нему.

Что это

3d принтер — это высокотехнологичное устройство, станок с ЧПУ (числовым программным управлением), реализующий идею послойного наращивания (печатания) объектов. Исходный материал в размягченном состоянии поэтапно наносится сразу на платформу, основу, а затем на заготовку. Механика принтера управляется программным обеспечением. Устройства отличаются конструкцией, принципом нанесения слоев, материалами, характеристиками и ценой.

История появления

В XX веке востребованными стали методы производства деталей, комплектующих и целых изделий на станках с применением координатных столиков. В 50-е годы с появлением алфавитно-цифровых печатающих устройств в воздухе начали витать идеи о трехмерной печати. Лишь в 1980-х годах развивается метод производства, основанный не на резании (фрезеровании, сверлении, точении, вырезании) – удалении материала из заготовки (аналог изготовления скульптуры), а путем его послойного добавления (для примера – выращивание кристаллов). Детали соответствовали образцу, созданному в системе автоматического проектирования.

Материалами выступали полимерные, металлические, керамические порошки. Связывались они диффузионным, термическим (плавление) либо клеевым методом. За три десятилетия совершенствования вычислительной техники, программного обеспечения и роста потребности в 3D-печати последняя развилась до получения металлических и полимерных изделий, не нуждающихся или требующих минимальной постобработки.

Десятки специалистов из многих стран мира работали над воплощением фантастических устройств для трехмерной печати. Чак Халл – нынешний главный директор технологического отдела 3D Systems изобрел прибор, работающий по методу лазерной стереолитографии.

Прототип выращивается из жидкого фотополимера под воздействием лазерного излучения. Передвижная платформа упрощает фокусировку лазера в нужных местах. Фотополимер после облучения лазером слой за слоем затвердевает, составляя основу прототипа. Готовый объект погружают в химический раствор для удаления излишков и сглаживания неровностей.

Основные характеристики

При выборе принтера ориентируйтесь на три вещи: бюджет, сфера эксплуатации и технические характеристики. С первым определяйтесь самостоятельно, с остальным мы поможем.

Область печати Максимальные габариты прототипа по трем направлениям, которые распечатает принтер. Реже указывается в кубическим сантиметрах, что менее информативно для потенциального клиента. Обычно область на несколько процентов меньше указанных значений.
Расширение Под расширением понимают минимальную толщину слоя материала. Чем ниже, тем качественнее модель, ровнее поверхность, менее нуждается в минимальной постобработке. В дорогих принтерах толщина наносимого слоя выставляется оператором.
Экструдер Экструдер или печатающая головка подготавливает (плавит) и наносит жидкий материал на подложку (модель). Состоит из сопла, откуда подается расплавленный пластик, транспортер для подачи полимерной нити, термодатчик для контроля за температурой и охлаждающий механизм. Модели с двумя-тремя экструдерами печатают цветные прототипы. Промышленные принтеры выпускаются и с двойным соплом.
Способы подключения Трехмерные принтеры коннектятся к компьютерам и ноутбукам через классический USB или по беспроводной линии связи Wi-Fi.
Встроенное программное обеспечение Микропрограмма – интерпретирует команды операционной системы и реализует их – «сообщает» принтеру, что нужно делать, чтобы напечатать трехмерную модель.

Для чего нужен

В одних сферах человеческой деятельности трехмерная печать упростила и ускорила работу, в других – открыла новые возможности. Основные сферы применения:

  • В быту или образовании используется в качестве средства для проведения экспериментов, создания механизмов.
  • В инженерии и разработке — для создания прототипов или экспериментальных образцов.
  • В производстве — для печати полимерных деталей со сложной геометрической формой, создания форм для литья легкоплавких материалов.
  • В строительстве — габаритные принтеры за считаные часы печатают здания из компаунда на основе бетона, широко применяются для возведения временных конструкций жилья.
  • Пищевая промышленность использует их для создания элементов украшения для тортов и кондитерских изделий.
  • В архитектуре — для печати макетов зданий, сооружений и целых микрорайонов.
  • Мелкосерийное производство деталей, статуэток, сувенирной продукции.
  • 3д в медицине – это точные копии органов и частей тела для экспериментирования, обучения, протезирования.

Плюсы и минусы

Трехмерная печать обладает преимуществами и недостатками.

  • Воспроизведение деталей сложной геометрии с точным повторением цифровой модели.
  • Печать деталей практически неограниченных габаритов на принтерах с соответствующим объемом рабочей камеры.
  • Высокая точность – качество печати почти всегда опережает качество деталей, изготовленных методом литья с постобработкой (фрезеровкой).

  • Подготовка к работе. Для настройки печати нужны специальные знания и опыт.
  • Габариты. Размер камеры в несколько раз меньше размеров самого принтера.
  • Бюджетные принтеры оснащаются маленькими рабочими камерами, а большие модели делаются поэтапным наращиванием — «склеиванием» моделей из нескольких частей.
  • Цена расходных материалов (зависит от его типа).
  • Низкая скорость работы даже моделей для мелкосерийного производства.
  • Ограниченность в материалах.
  • Применение поддержек (кроме метода PVA) с постобработкой.
  • Невысокая прочность модели.

Виды и типы

Виды по технологии печати

Существует десяток технологий трехмерной печати:

По типу применяемых расходников

В качестве расходников применяется несколько материалов.

Порошки Печатающая головка наносит на подложку слой клея в нужных местах, валик – слой порошка (металлической пудры), спекаемого с веществом.
Гипс Предыдущий вариант, где вместо металлического порошка применяют гипс, шпаклевка, цемент обязательно со связующим компаундом.
Полимеры Жидкие фотополимеры затвердевают под воздействием электромагнитных излучений (метод SLA). Расплавленные пластиковые нити (PLA, PVA, ABS) послойно наносятся на подложку и шустро затвердевают.
Воск Доступный легко плавящийся материал для получения высококачественных деталей, прост в работе.

По конструкции

Различают несколько конструкций 3D-принтеров.

    RepRap. Самовоспроизводящийся аппарат, способен печатать детали, необходимые для производства собственных копий. С минимальными затратами создают 3D-принтеры для массовой эксплуатации. Поставляются как набор металлических комплектующих без пластиковых элементов (их можно напечатать), а порой, и электроники. Требуют много времени для сборки, дешевые.

Как работает и печатает

Принцип действия

Создание модели

После сборки и настройки (калибровки) необходимо создать печатаемую трехмерную модель в 3D-редакторе.

  • 3D-моделирование. В программе для трехмерного моделирования создается модель. Крупные прототипы, которые не поместятся в камеру принтера, делятся на несколько помельче. Трехмерная модель отправляется в программу-слайсер для формирования G-кода.
  • G код. Слайсер – приложение для автоматической подготовки цифровой модели в формате STL к печати на 3D-принтере – генерирования G-кода. Слайсер нарезает модель на слои и описывает движения печатающей головки и ее действия, необходимые для формирования прототипа. На основе G-кода печатающая каретка передвигается по заданной траектории, а сопло наносит материал в указанные моменты.

После запуска печати устройство выполняет команды из G-кода.

Чем печатает: расходные материалы

Основные расходные материалы для трехмерных моделей – пластик и фотополимер.

Как пользоваться и печатать

Самые трудные моменты в эксплуатации собранного 3D-принтера – его калибровка и создание цифровой копии модели.

Предварительные настройки (список)

До начала работы пользователь должен выполнить ряд подготовительных мероприятий:

  1. Подготовить место, где будет производиться печать.
  2. Заправить устройство расходными материалами.
  3. Подключить принтер к персональному компьютеру или ноутбуку.
  4. Проверить проходимость экструдера.
  5. Выполнить калибровку движения печатающей каретки.
  6. Загрузить модель в программу для печати.

Непосредственно в процессе:

  1. Следить за нагревом подложки и сопла.
  2. Постоянно вести наблюдение за температурным режимом.
  3. Управлять скоростью подачи расходника.
  4. Вовремя проводить замену бобин с пластиком на нить другого цвета или если она закончилась.

Это основной список с учетом, что 3д модель объекта уже готова.

Но также обратите внимание на такие «моменты»:

  • Калибровка. Прежде чем запустить печать, калибруется движение печатающего механизма относительно платформы во всех направлениях с учетом расходного материала.
  • Температура. Задается температура плавления пластика. Необходимо добиться того, чтобы слои пластика не накладывались друг на друга, но и пустого пространства между ними не было. Для этого разработан ряд утилит, применяются пробные модели.
  • Время создания объекта. Время печати детали зависит от ее габаритов, быстродействия принтера и его точности. Чем выше точность исполнения, тем дольше печатается модель: от нескольких минут до пары часов.

Трехмерная печать плотно вошла в человеческую деятельность. Приобрести принтер или собрать его как сложный конструктор для взрослых смогут многие, как и научиться создавать трехмерные модели. Кто знает, может в скором будущем люди научатся печатать отходами из мебельного производства для экономии экологического материала. Или смогут печатать камни с необычной геометрией для строительства изысканных сооружений по принципу полигональной кладки, которые обнаруживают по всему земному шару.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий
Adblock
detector